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Asymptotic theory of wall-attached convection in a 
rotating fluid layer 

By J. HERRMANN AND F. H. BUSSE 
Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany 
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Asymptotic expressions for the onset of convection in a horizontal fluid layer of finite 
extent heated from below and rotating about a vertical axis are derived in the limit of 
large rotation rates in the case of stress-free upper and lower boundaries. In the 
presence of vertical sidewalls, the critical Rayleigh number R, is much lower than the 
classical value for an infinitely extended layer. In particular, we find that R, grows in 
proportion to 7 when the sidewall is insulating, where 7 is the dimensionless rotation 
rate. When the sidewall is infinitely conducting, R, grows in proportion to 7; as in the 
case of an infinitely extended layer but with a lower coefficient of proportionality. 
Numerical results obtained at finite values of 7 show good agreement with the 
asymptotic formulae. 

1. Introduction 
The problem of the critical conditions for the onset of convection in a rotating fluid 

layer heated from below has received much attention ever since Rossby (1969) noticed 
that in his experiment with a water layer the onset of convection occurred at a lower 
critical Rayleigh number than that predicted by the theory of Chandrasekhar (1961). 
In later experiments by Lucas, Pfotenhauer & Donnelly (1983) and by Pfotenhauer, 
Niemela & Donnelly (1987) a similar discrepancy was observed. At about the same 
time Buell & Catton (1983) found from numerical computations that in a circular layer 
of finite radius non-axisymmetric forms of convection could set in at Rayleigh numbers 
considerably below the value R, calculated for an infinite layer. This finding appeared 
to resolve reasonably well the discrepancies between experimentally observed and 
theoretically predicted values. More recent detailed observations by Zhong, Ecke & 
Steinberg (1991) and by Ecke, Zhong & Knobloch (1991) have demonstrated, however, 
that the onset of convection occurs in the form of drifting waves in contrast to the 
steady modes assumed in the analysis of Buell & Catton. As has been pointed quite 
correctly by Ecke et al. time-dependent onset must be regarded as the rule rather than 
the exception in a rotating system because of the broken left-right symmetry. Detailed 
computations for the onset of drifting modes by Goldstein et al. (1993) show good 
agreement with the observations of Ecke et al. 

The computations of Buell & Catton (1983) as well as the more recent calculations 
by Goldstein et al. (1993) have demonstrated that the presence of sidewalls supports 
the early onset of convection and that insulating sidewalls in particular lead to a 
substantial decrease in the critical Rayleigh number in comparison to the case of an 
infinite layer. But the range of the rotation parameter considered in the calculations has 
been restricted owing to the problems of numerical convergence, and because of the 
assumption of a circular layer the aspect ratio has entered the analysis as an additional 
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parameter. Since the wall-attached convection flow represents basically a boundary- 
layer phenomenon in terms of the distance from the sidewalls, a finite curvature of the 
wall is not an essential ingredient of the problem. In this paper an asymptotic analysis 
as well as a numerical study are presented for the case of a plane sidewall. A main result 
is the different power laws obtained for conducting and insulating sidewalls. 

The mathematical formulation of the problem is given in 92. The asymptotic theory 
is derived in $3 and its analytical expressions are compared with numerical results 
obtained for finite values of the rotation parameter in 94. A general discussion is given 
in a concluding section. 

2. Mathematical formulation of the problem 
We consider a horizontal fluid layer heated from below with a vertical sidewall which 

is rotating about a vertical axis. We use the thickness d of the layer as lengthscale, d 2 / ~  
as timescale where K is the thermal diffusivity, and the temperature difference between 
lower and upper boundary, T,- T,, as temperature scale. We introduce a Cartesian 
system of coordinates with the x-axis normal to the sidewall, the y-axis parallel to the 
sidewall and the z-coordinate in the vertical direction as indicated in figure 1 .  The unit 
vectors i,j, k point in the x-, y-,  z-directions, respectively. For the solenoidal velocity 
field u we use the general representation 

u = v x (V x iv )+V x iw. (2.1) 
By taking the x-components of the (curl), and of the curl of the equations of motion 
in the rotating system, we obtain the following equations for v and w:  

a a 2  

az ax a Z  
V2A2v--r-A2w+R-8= 0, 

(V2-P-'$) A 2 w + r - A , v - R - 8  a a = 0, 
a Z  aY 

( 2 . 2 ~ )  

(2.2b) 

where 8 describes the deviation of the temperature from the static solution of pure 
conduction. 8 is determined by the heat equation 

( 2 . 2 4  

We have neglected all nonlinear terms since we are interested in convection flows of 
infinitesimal amplitudes. The centrifugal force has been neglected in comparison with 
gravity and A, denotes the two-dimensional Laplacian, A2 = a2/i3y2 + a2/i3z2. The 
Rayleigh number R,  the rotation parameter 7, and the Prandtl number P are defined 
by 

VK V K '  

where y is the thermal expansivity, g is the acceleration due to gravity, v is the 
kinematic viscosity, and Q is the angular velocity of rotation. Note that the neglection 
of the centrifugal force in comparison with g can be justified even in the limit of large 
r as long as g and d 2 / v  are sufficiently large. For example, for a layer of water with a 
diameter of 1 m and a height d = 10 cm which is rotating with 6 r.p.m. the centrifugal 
force is 2 YO of gravity at the rim while r is about 1.3 x 10'. 
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t z  

FIGURE 1. Geometrical configuration of the problem of wall-attached convection. 

The boundary conditions at the stress-free upper and lower boundaries and at the 
rigid sidewall are given by 

(2.4) 

( 2 . 5 ~ )  a v = - - v = w = O  at x = O ,  

sidewall at x = 0. (2.5b) insulating: case I 
conducting: case C 

The combination of stress-free boundaries at z = ki and a no-slip boundary at x = 0 
offers the advantage that separable solutions of the linear problem (2.3), (2.4), (2.5) can 
be obtained. Without losing generality we may assume an exponential dependence on 
y and on t and write the solution in the form 

ax 

I = o for { 

4 
v = C Ajexp{-p,x+i~y+i63t}sinnz, ( 2 . 6 ~ )  

0 = C B, exp { -p, x + ipy + iGt} cos nz, (2.6b) 

w = C Ciexp{-pjx+iipy+i63t)cosnz, ( 2 . 6 ~ )  

n=l 

4 

i=1 

4 

3’-1 

where the constants p, are the roots with positive real part of the equation 

q(4 - icij/P)2((ci - i63) - R(4 - iG/P) (4 + .n2) - 72~2(4  - i5) = 0, (2.7) 

which follows from (2.2). Once the roots ,+ have been determined, the coefficients 
Aj ,  B,, C, can be obtained in terms of four unknowns D,, j = 1,. . . ,4, 

with 
7 

A, = V2R - (jJ2 + n2) (& - G / P )  (4, - 6 ) )  Dj, 
B, = V2 + n2) (ipm -pj ~(4 ,  - ib/P)) Dj,  
C, = (i&, n + 7n(Pz + n2) (dj - i63)) D,, 

(2.8 a)  
(2.8 b) 
( 2 . 8 ~ )  

4 =  - p;-p2-n2. 

F L M  2 5 5  
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The unknowns D, are determined by the boundary conditions at x = 0, 
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4 

C~(ip7.-pjn(~,-ioi/P))D, = 0, (2.9 a) 

C [/12R-(j32+~2)(4j-iio)($j-i&/P)] D, = 0, (2.9b) 

C pi [p2R - (p" + n2) (8, - i&) (gj - i&/P)] D, = 0, (2.9 c) 

C [ipR,uj 71: + 7nv2 + n2) (4, - i&)] Dj = 0, (2.9 d )  

j=1 

r 

j-1 

4 

,=1 

4 

j=1 

f,(@ - .v,(q1- i w / m  ... 
p2r - v2 + n2) (ql - io/P) (ql - io) . . . 

D = det vl(p2r - (p2 +I?) (ql - iw/P) (ql - iw)) . . . 
i,8rv1n+(P2+n2)(q1-io) ... 

where 

= 0, (3.3) 

iE1 $IF} f o r j =  1, ..., 4inthecase (2.10) 

The solvability of the system (2.9) of homogeneous equations requires that the 
determinant of the coefficient matrix vanishes. In the following we shall first evaluate 
the determinant in the limit of large 7 and then compare the results with a numerical 
solution at moderate values of 7. 

3. Asymptotic analysis 
In the limit of large 7 it is convenient to use rescaled quantities, 

r = h 4 R ,  w = h 2 & ,  v j = h p , ,  qj=vVj2-h2(p2+n2), j = 1 ,  ..., 4, ( 3 . 1 ~ )  
where h is defined by h E (4 (3.1 b) 
Accordingly (2.7) for the roots qj can be written in the form 

qj(qj-gy(qj-io)-r ( qj-- pw) (qf+h2xC2)-qj+iw = 0 f o r j =  1, ..., 4, (3.2) 

k). = { y }  in case (3.4) 

The rescaling (3.1) has been motivated by the property that all terms in the coefficient 
matrix (3.3) are of the same order and an explicit dependence of (3.3) on h has been 
eliminated. The real and imaginary parts of (3.3) determine r and w as functions of ,!3 
and A. In the limit h = 0 (3.3) can be evaluated easily in case I. The solution 

#O) = = 0 

satisfies (3.3) since the first column vanishes identically. Since v1 will be of order h we 
introduce the perturbation expansion 

, q?)= v?) = O ,  (q1"))3 = 1 for j = 2 , 3 , 4  (3.5) 

v1 = hvy) + . . . , r = hr(l) + h2r(2) + . . . , o = ho'l) + h2d2)  + . . . (3.6) 
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1 1  1 1 
r -q i l  - q ; 1  -qil 
0 V Z 4 2  v 3 4 2  v49 i1  
0 q 2  9 3  q 4  

(3.13) = 0, 

and obtain at order h of (3.3) the condition 

where the third and fourth columns are identical to the second one except that the 
subscript 2 is replaced by 3 and 4, respectively. To obtain a consistent expression for 
vy), we must require w(l) = 0 with the result 

After rewriting (3.6) in the form 

where the convention q r )  = 1 has been used, we obtain 
2pcB2+~2)2(ip+n)(~~)--~))(~ll)(p+ix)-pr(1)) = 0, 

Equating real and imaginary parts in this relationship we find 

(3.10) 
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FIGURE 2. The critical Rayleigh number R, for the onset of convection at an insulating wall as a 
function of r2 = Q2d2/v2 as obtained from numerical calculations (solid line) in comparison with the 
asymptotic value (3.12) (dashed line) and the value for an infinite layer (dotted line). 

i ... I 

where the second column is repeated in the third and fourth columns of each 
determinant with the subscript 2 replaced by 3 and 4, respectively, and where the 
abbreviation S .  = v(0) ( 0 )  - 2q,!O)qjl)) + vjl)(r(O) - ( q , ! O ) ) 2 )  

3 -  j (r 
has been used. As in case I, w ( l )  must vanish and the quantities vjl) are given by 

An inspection of (3.16) shows that it can be written in the form 

where E, F and G are real numbers which can be computed numerically, 

The separation of the wavy bracket in (3.18) into real and imaginary parts yields 

v f )  = ( a ~  +iw(2))1, vj (1) = r (1) (qj (0) )"4(qy))3+2]-1 for j =  2,3,4. (3.17) 

a'{(.( - Er(l) + Fvy))  + iG} = 0, (3.18) 

E = 5.00740, F = 4.451 02, G = 12.70466. (3.19) 

(3.20) 

Since we assume a positive wavenumber a, the negative sign of w@) must be chosen in 
order to obtain a finite minimum for r('). Since r(O) is independent of p ,  the minimum 
of R is determined by i3r(l'/i3a = 0. This condition yields 

a, = (G/F)i, wz,") = 242G/F ,  r r )  = (2GF)g/E. (3.21) 
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FIGURE 3. (a) The critical wavenumber p, (ascending lines, left ordinate) and the critical frequency 9, 
(descending lines, right ordinate) for Prandtl numbers 7.0 (solid lines), 2.0 (dashed lines), and 0.7 
(dotted lines). The long dash-short dash lines indicate the asymptotic values. (b) The scaled critical 
Rayleigh number for the same parameters as used in (a). 

Using the numerical values for E, I; and G we obtain the following asymptotic critical 
conditions for the onset of convection attached to a conducting sidewall: 

/3, = 1.689(7n)b + o( l), 
3, = - 8.073(7~)$ + o(& 

R, = 0.9086(~7~)$+ 2.124(~n)~+o(~).  

(3.22 a) 
(3.22 b) 

(3.22~) 

4. Comparison with numerical results 
In the numerical investigation the full problem posed by (3.2) and (3.3) is solved. No 

special difficulty is encountered when the problem is attacked with the usual library 
routines on a computer except for the property that a solution cannot be obtained for 
low values of 7, where a wall-attached convection mode is no longer feasible. In figure 
2 the strong reduction of the critical Rayleigh number for the onset of convection near 
an insulating wall can be seen. For values of 7 as low as lo3 the asymptotic expression 
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FIGURE 4. (a) Real part of the normal velocity uz = -A, v as a function of the scaled distance from 
the sidewall for 7 = 10, (dash-dotted line), 7 = lo4 (dashed line), 7 = lo6 (solid line), and the 
asymptotic case, 7 = 00 (dotted line). P = 7.0 has been assumed. (b) Same as (a) but for the imaginary 
part of u,. Instead of the asymptotic, case, the case 7 = los (long dash-short dash line) has been 
plotted. (c) Same as (a) but for uu = 733*v /axay+  aw/az). (d) Same as (c) but for the imaginary part 
of uu. (e) Same as (c) but for u, = 7-~(a2v/~xaz-~w/~y) instead of u,. cf) Same as (e) but for the 
imaginary part of u,. 
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FIGURE 5 .  (a) Real parts of the temperature 0 and of u, (positive curves) as a function of the distance 
x from the wall for 7 = lo2 (dash-dotted lines), 7 = lo4 (dashed lines), 7 = lo6 (solid lines), and for 
the asymptotic case 7 = 00 (dotted line). P = 7.0 has been assumed. (b) Same as (a) but for the 
imaginary parts. The lines of u, start at zero for x = 0. 

(3.12) is already within 5 %  of the numerically determined value. The approach 
towards the asymptotic value is less rapid for the wavenumber /? and the frequency D 
as shown in figure 3. It is remarkable to see, however, the small influence of the Prandtl 
number. The property of vanishing Prandtl-number dependence of the asymptotic 
results is thus modified only slightly for finite values of 7. 

In figures 4 and 5 the three components of the velocity field and the temperature 
disturbance are plotted. The components parallel to the wall are restricted to a layer 
with a thickness of order 74 while the normal velocity component and the temperature 
disturbance include contributions which extend to a distance of order unity from the 
boundary. The latter dependence is of the order exp { - px}. In the case of a conducting 
boundary, the corresponding terms will thus decay much faster with distance from the 
wall. 

The solutions shown in the plots of figure 4 have been normalized in such a way that 
the exp { -,ul x} term of u, has the amplitude 100 at the wall. The lines of vanishing u, 
assume an angle of 34" with the x-axis and are directed in the negative y-direction at 
distances of order unity from the wall. The roll-like structure with an exponential decay 
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away from the boundary shows some similarity with the phenomenon of Kelvin waves. 
The propagation of wall-attached convection is similar to that of Kelvin waves, except 
for the opposite sense with respect to the axis of rotation. The main difference lies in 
the dominance of dissipative processes in the case of convection, which are not 
important for Kelvin waves. 

The support of the sidewall for the onset of convection depends primarily on its 
thermal properties. Because a conducting sidewall tends to damp the temperature 
perturbation, much less buoyancy is available to counteract the effects of viscous 
friction and of the stabilizing Coriolis force. As shown in figure 6 the deviations from 
the case of an infinite layer are much reduced. As in the case of the insulating wall the 
approach towards the asymptotic expressions is much faster for R, than for 4, and p,. 

5. Concluding remarks 
The phenomenon of wall-attached convection appears to be a unique property of 

rotating systems. In non-rotating systems sidewalls in general exert a stabilizing 
influence on the onset of convection unless they disturb in some way the basic state of 
pure heat conduction. The steady mode of convection in an infinitely extended rotating 
layer also appears to be slightly stabilized by the presence of sidewalls. In their analysis 
of the onset of convection in a circular layer, Goldstein et al. (1993) do indeed 
distinguish two modes of convection. Besides the wall-attached mode there is a roll-like 
convection pattern growing from the centre towards the walls which exhibits a much 
slower drift than the wall-attached mode. The interesting nonlinear interactions visible 
in the experimental study (Zhong et al. 1991) should be accessible to a weakly 
nonlinear analysis of the problem. 

The curvature of the sidewall exerts only a secondary influence on the onset of 
convection as is evident from the comparison with the results of Goldstein et al. (1993) 
which have been computed for a cylindrical box with its height equal to its radius. 
Using the integer value p corresponding to the wavelength of the convection pattern 
at the rim of the box we obtain slightly higher values for Rayleigh numbers and 
frequencies. But a rapid convergence with increasing 7 can be seen in table 1. The 
difference between the values for r = 1 and co can be explained in part by the fact that 
the effective wavenumber in the case = 1 is higher since it characterizes convection 
at some distance from the sidewall. For the cases 7 = 40 and 100 an increase of p yields 
lower values for R and 3 as can be seen from the critical values for r = co which also 
have been listed in table 1. There remains, however, a destabilizing effect of the 
curvature of the sidewalls as is evident from the data for 7 = 500 where the integer 
value p = 4 closely matches the critical value p, for r = 00. 

The drifting wall-attached convection must be clearly distinguished from the 
oscillatory onset of convection expected in the case of low-Prandtl-number fluids. The 
latter type of convection exhibits the dynamical properties of inertial oscillations and 
the frequency is thus of the order of the angular velocity D of rotation. The critical 
Rayleigh number for the onset of oscillatory convection in an infinite layer grows in 
proportion to ( P T ) ~  for low P according to Chandrasekhar (1961). The convection 
mode attached to an insulating wall considered in the present paper is thus still 
preferred if the rotation rate is sufficiently high according to relationships (3.12). The 
convection mode attached to a conducting wall, however, will be preferred only for 
P 2 0.37 at high rotation rates. 

After this paper had been submitted a paper by Kuo & Cross (1993) became known, 
in which the same problem is analysed independently. Their results agree with those of 
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FIGURE 6. (a) The critical wavenumber (ascending lines for large 7, left ordinate) and the critical 
frequency 0 (descending lines for large 7, right ordinate) for P = 7.0 (solid line), P = 2.0 (dashed line), 
and P = 0.7 (dotted line). The constant lines indicate the asymptotic values given by (3.22a, b). (b) 
The critical Rayleigh number Rc for the onset of convection at a conducting wall for the same cases 
as in (a). The long dash-short dash line indicates the asymptotic expression (3.22~) and the constant 
line indicates the asymptotic value for an infinite layer. 

r= 1 r= 00 
7 P Rc 0, 4, WO P c  Re 0, 

40 2 1990.26 8.68 2248.5 9.89 3.006 2014.5 7.01 
100 3 3945.30 12.22 4215.6 13.71 3.332 4181.0 12.79 
500 4 17260.48 22.69 18203.9 23.46 3.936 18199.8 23.60 

1000 5 34989.6 26.88 36318.6 27.05 4.191 35347.3 28.29 
TABLE 1. Comparison of critical Rayleigh numbers R, and frequencies 0, in the case of a circular 
cylinder with radius 1, i.e. r = 1, calculated by Goldstein et al. (1993) with values R,, 0, of the present 
analysis corresponding to the limit of an infinite radius, r = co, for the same wavenumber p. Also 
shown are the critical values for r = co. P = 6.7 has been used for all computations except for the 
case 7 = 1000 where P = 7.0 has been used. In this latter case the critical wavenumber for l- = 1 is 

= 4, but accurate numerical values have been given by Goldstein et aZ. (1993) only for P = 5. 
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the present paper in the case of the insulating sidewall. Explicit results for the case of 
an infinitely conducting sidewall and details on the convection modes have not been 
given in their paper. 

The main results of the present paper have been presented at Workshop on Mixing 
in Geophysical Flows, Dec. 16-18, 1992, Barcelona, Spain. The support of the 
Deutsche Forschungsgemeinschaft under Grant BU 589/2 is gratefully acknowledged. 
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